

Introduction to metabolomics research

Stephen Barnes, PhD 4-7117; sbarnes@uab.edu

What is "Metabolomics"?

- Metabolomics is like other types of –omics analysis (microarray, proteomics, etc.)
 - Offers a "comprehensive" view of all detectable chemicals (not just metabolites)
 - Can be applied to body fluids
 - Plasma/sera, urine, saliva, tears, etc.
 - Also to tissues
 - Liver, lung, heart, kidney, etc.
 - And to single cells
 - Human, rodent, yeast, bacteria, etc.

- 1. To understand the vital roles of metabolites
 - To provide energy for the chemical and enzymatic processes of life
 - To provide the building blocks for the macromolecules (DNA, RNA, proteins, carbohydrates, lipids)
 - As co-factors
 - As signaling molecules
 - As biomarkers for disease

Course goals

- 2. To understand the origins of metabolites
 - Produced by (human) cells
 - Produced by the things that we eat (the food-ome)
 - Plants (wheat, corn)
 - Fruits (apples, oranges, strawberries)
 - Vegetables (rice, potatoes, broccoli, peas)
 - · Dairy products, including fermented forms
 - Meat from other animals
 - Xenobiotics
 - Produced by microorganisms in our bodies

Complex metabolism of daidzein

Soybean - malonylglucoside of daidzein

Tofu/soy milk – β-glucoside of daidzein

Gut wall - phlorizin hydrolase - daidzein

Dihydrodaidzein O-Desmethylanglensin

Enterocyte – daidzein β-glucuronide

Liver - hepatobiliary transport

Bacterial hydrolase - daidzein

Bacterial reduction – S(-)-equol

Enterocyte (?) – liver - S(-)-equol β-glucuronide

- 3. To understand that a metabolomics experiment is high dimensional
 - i.e., it is compares the intensities of hundreds, if not thousands, of distinct species
 - Very important statistical consequences
 - Cannot afford to do a robust experiment that fully satisfies theoretical statistical principles
 - Very important to sit down with a statistician prior to executing an experiment

Course goals

- 4. To select the appropriate method for extracting/recovering metabolites
 - Metabolites encompass an enormous range of chemistries
 - Gaseous (H₂, H₂S)
 - Volatile (butyric acid, acetone, skatole)
 - Hydrophilic (glucose)
 - Charged-positive/negative (amino acids, nucleotides, organic acids, amines)
 - Hydrophobic (lipids, steroids, hydrocarbons)
 - No single method suitable for all metabolites

5. Selecting the analytical approach

- In situ analysis
 - · Laser ablation of frozen tissue
 - · Other desorption methods
 - Magic angle spinning NMR
 - Other spectroscopic methods
- Extracted samples
 - NMR
 - GC-MS (1- and 2D chromatography and MSMS)
 - LC-MS (1- and 2D chromatography and MSMS)
 - CE-MS
- Targeted vs untargeted analysis

Course goals

6. Analysis of the data

- Data alignment
 - NMR methods
 - LC-MS and GC-MS methods (XCMS)
- Statistical evaluation
 - Univariate and multivariate analysis (MetaboAnalyst)
 - XCMSonline
 - Mummichog
- Data visualization
 - XMCSonline
 - Mzmine

7. Identifying the "interesting" metabolites

- Use of MS (absolute mass)
 - METLIN
 - Mummichog
 - ChemSpider
- MSMS (fragmentation spectra)
 - METLIN
- Metabolite standards
- Importance of retention time
 - Multiple column conditions

Course goals

8. Pathways and applications

- Mummichog
- KEGG pathway mapping
- Applications to:
 - Adverse cardiovascular risk
 - Diabetes
 - Lens and kidney diseases
 - Cancer

Use of stable isotopes

- 9. Novel pathways and pathways atom by atom
 - The pathways in the text books were built when
 - 1. First GC-MS, then high field NMR and most recently LC-MS were not available to take advantage of stable isotope labeling of unstable intermediates
 - 2. We didn't appreciate the role of the microbiomes in the pathway "stories" being built
 - Now specifically labeled ¹³C, ¹⁵N and ¹⁷O/¹⁸O precursors and intermediates are available to trace pathways and their dynamics

A brief history of metabolomics

Nuclear physics moves to biology

1897 JJ Thomson discovers the electron (cathode rays)

 1919 Aston using a mass spectrograph shows that Neon with a non-integer MW (20.2 Da) is composed of two isotopes, ²⁰Ne and ²²Ne

http://www.asms.org/Publications/Historical/HistoryofMassSpectrometry/tabid/94/Default.aspx

Transition to biology

Ralf Schoenheimer

David Rittenberg

- While the politicians, tyrants, dictators and despots were salivating at the thought of developing nuclear weapons from unstable isotopes in the early part of the 20th Century, two scientists began the pursuit of the peaceful use of stable isotopes, initially deuterium (²H), and later carbon (¹³C) and nitrogen (¹⁵N), to study biochemical pathways
- Understanding the pathways of metabolism was born

Metabolism to metabolomics

- Measured with enzymes NAD(P)H absorbance/fluorescence
 - Studies of glycolytic and the TCA cycle intermediates one at a time
- · Organic acids, fatty acids and amino acids by GC
 - Volatile derivatives, Flame Ionization Detection
 - GC-MS started in mid-70s
 - Capillary GC gave far higher chromatographic resolution than the packed ¼" ID columns (1975/6)

Origins of practical metabolomics Imperial College 1967-1970

Radio 2D-paper chromatography scanner with digitization of collected data

The room had 20 of these scanners – data analyzed by a central computer (in 1968)

Courtesy of K.R. Mansford, PhD

Radio gas-liquid chromatography with digitization of collected data

Developed this for my PhD work (1967-1970) to study glucose metabolism in acellular slime moulds

How NMR became a player

- Mid 60s introduction of Fourier transform analysis
- Late 70s introduction of superconducting magnets
- Early 80s pulse sequences

Gas chromatography

- Built on critical steps
 - 1908 Twsett introduces the concept of chromatographic separation (of plant pigments)
 - 1941 Martin and Consden conceptualize the rules of partition chromatography (get the Nobel Prize)
 - 1950 James and Martin describe gas chromatography of volatile fatty acids
 - 1975 (Finally) open tubular, capillary gas chromatography becomes commercially available

Progress in LC-MS

- Commercial HPLC appeared in the early 1970s to separate thermally stable and unstable molecules
- The challenge remained to find a way to get the unstable compounds into the gas phase
 - Applied to macromolecules (peptides, proteins) as well as metabolites
- Thermospray had some initial success
- Electrospray ionization and chemical ionization radically changed analysis, allowing compounds to go into the gas phase at atmospheric pressure and room temperature

LC-MS

- Suddenly, there were what appeared to be no limits (or very few) to what could be analyzed
- Unheard of, <u>robust</u> mass spectrometers came into play
 - "A reliable mass spectrometer" was considered in 1990 to be an oxymoron

Changing times in Computing

- 1950 The Cambridge colleagues of Watson and Crick calculated the structure of DNA by putting data onto punched cards and taking them by train to London for analysis – and to the fog – the "cloud" in 1950s
- 1964 Seymour Cray develops the CDC 6600 (1 Mflops)
- 1967 I used paper tape to collect data from a radio gas chromatograph and then submitted them via a terminal reader to the CDC 6600 at the University of London

Today in Computing

On my desk in 2013

- The Apple MacBook Air with 2 quad core Intel i7 processors
 - Operates at 2.0 GHz
 - Memory of 8 GB
 - Access 1.333 GHz
 - 512 GB Flash memory storage
 - 10 Gbs Thunderbolt I/O
- Also costs ~\$2,000

IBM Blue-Gene

- Parallel processing with 2,048 700 MHz computers operating at 4.733 Tflops
- Replaced by Cheaha, in its current configuration it has 48 compute nodes with two 2.66GHz 6-core Intel CPUs per node (576 cores total)
- It operates at 6.125 Tflops

MRC-NIHR National Phenome Centre

600 MHz NMR instruments in surgical suite

Mass spectrometers (10 Q-TOFs) each dedicated to one assay format

Iknife - revolutionizing surgery

This is Next-GEN precise medicine

UAB capabilities in metabolomics

SCIEX 5600 TripleTOF with Eksigent nanoLC

TMPL mass spec lab MCLM 459/427 Stephen Barnes, Director 934-7117/3462

SCIEX 6500 Qtrap with SelexION

Central Alabama NMR facility Chemistry Bdg N. Rama Krishna, Director 934-5695

Great challenges in metabolomics

- · The extent of the metabolome
 - From gaseous hydrogen to earwax
- Having complete databases
 - METLIN has 60,000+ metabolite records, but your problem always creates a need to have more
 - Current lack of a MSMS database
- Storing and processing TBs of data
- Standards and standard operating procedures
- Being able to do the analyses in real time

NIH Common Fund Metabolomics Program

- Metabolomics Workbench:
 - http://www.metabolomicsworkbench.org/
- Regional Comprehensive Metabolomics Research Centers
 - University of Michigan: http://mrc2.umich.edu/index.php
 - UC Davis Metabolomics Center: http://metabolomics.ucdavis.edu/
 - RTI International: http://www.rti.org/page.cfm?objectid=3BC41B11-068E-1405-9A6F79D91D8D69EC
 - SE Center for Integrated Metabolomics: http://secim.ufl.edu/
 - Resource Center for Stable Isotope Metabolomics: http://bioinformatics.cesb.uky.edu/bin/view/RCSIRM/
 - Mayo Clinic Metabolomics Resource: http://www.mayo.edu/research/core-resources/metabolomics-resource-core/overview